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1. Preface

1.1. Preface

Project history

In autumn 2013, 5k Z&1# (Zhang Ruibo, Shenyang Conservatory and head
of CHEARS, the China ElectroAcoustic Resource Survey) approached me to
present a week-long introductory SuperCollider workshop in April 2014. I
wrote this material in the first couple of months of 2014.

Overview

This document includes all the presentation slides from the workshop, plus
further explanation in text, an Appendix with additional topics (interesting,
but too much for one week!), and an index and glossary of terms. The mate-
rial serves two purposes: first, to guide the workshop sessions (which don’t
need to follow the slides exactly), and second, to provide documentation
which CHEARS may translate into Chinese.

The workshop aims to simplify individual units of code by imitating
modular synthesis in code. This approach avoids several of the trickier chal-
lenges of learning SuperCollider, related to code structure and server archi-
tecture. It is, however, a new approach; “canonical” SuperCollider style is
different in some important ways.

Why not simply teach the canonical style? When approaching any pro-
gramming language, small code blocks are easier to understand, while
larger ones, even ten lines, may be scary at first. Canonical style binds many
synthesizer components into one self-contained unit called a SynthDef; di-
viding it into more digestible pieces requires the new user to understand
details of the server that are likely to be confusing at first. The modular
style presented here allows each module to handle one small piece of syn-
thesis and relieves the new user from the burden of understanding advanced
concepts too early.

This modular style depends on some new extensions to the language.
Installation instructions are in Part I. The specific extensions are:
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+ Improved handling of modules that represent constant numbers.
« A modifier, \psSet, to act on many modules at once using a central
code interface.

Some of these may be incorporated in future SuperCollider versions. At
that time, the workshop extensions package will have to change.

Typographical conventions
Code examples appear in a monospaced sans-serif font, Inconsolata:!
Server.local.boot.

Keyboard shortcuts are boxed: .

Numbered code examples are collected into scd files. Each Part has two
collections: one with all examples, and the other with only selected exam-
ples. I strongly recommend using the selected examples only. You will learn
more by typing the examples yourself, instead of passively executing them.

The document is written using org-mode 8.2.32 running in Emacs 23, and
typeset using BIEX (xelatex from TexLive 20123) with Beamer extensions.*

Copyleft and licensing

This document and all associated materials are released under the Creative
Commons Attribution-ShareAlike 4.0 license.® You may use these materials
as the basis of a new workshop or course, if you:

+ Give credit to me as the initial author (Attribution);

* Release your materials under a similar (more permissive) license
(ShareAlike). That is, you should allow others to modify your version
and publish their version.

You may not lift large passages of this work and claim them as your
own, or publish them under a copyright-style license that forbids further
modification. This work is meant to be part of a conversation about art and
programming. Copyright stops the conversation, so I don’t want it.
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