Workshop: Synthesis and Performance in
SuperCollider

H. James Harkins

March 23, 2014

Contents
Preface 4
1.1 Preface e 4
Introductory SC, Synthesis and Sequencing 7
Workshop introduction 7
2.1 Workshop introduction 7
2.2 Brief, incomplete history of audio programming 8
SC architecture, usage 10
3.1 SCarchitecture, 10
3.2 Using the Integrated Development Environment 12
3.3 Preparing the environment 13
SC language: Beginning steps 16
4.1 Makingnoise e 16
4.2 SClanguage syntaxX« v v v v v v v v v e e 18
4.3 Exercises: Math operations 26
Modular synthesis with JITLib 28
5.1 What is modular synthesis? 28
5.2 JITLibpatching 30
Note control 32
6.1 Playing notes by envelopes 32
6.2 Timed and sustaining envelopes 37

2 Contents
7 Sequencing 40
7.1 Overview: Routinesand Tasks 40
7.2 Time control: Clocks and scheduling 44
7.3 Sequencingofnotes 46
7.4 Data streams for note information 49
II Sequencing with Patterns; Synthesis Techniques 54
8 Events and Sequencing 54
8.1 Events and synthesiscontrol. 54
8.2 PatternsandEvents 58
9 Subtractive synthesis 62
9.1 OVeIVIEW v i ittt e e e e e e e e e 62
9.2 Analog-style oscillators 64
9.3 Filters e 70
10 Modulation: Low-Frequency Oscillators 73
10.1 Modulation: Low-Frequency Oscillators 73
10.2 Range mapping for modulation 75
10.3 Another envelope use: Articulation 80
11 Frequency modulation (FM) synthesis 82
11.1 John Chowning’s experiment 82
11.2 Refining FM synthesis 84
11.3 Wavetable oscillators 86
12 Sample playback and manipulation 920
12.1 Loading and playing samples 90
12.2 Triggering sound file fragments 94
III Musical and External Control 103
13 Granular synthesis 103
13.1 Granular synthesis parameters 103
13.2 Usage of granular synthesis 107
14 External control 110
14.1 Basicconcepts: GUI 110
14.2 Open Sound Control fundamentals 119

14.3 OSC and mobilecontrol

Contents 3
15 Toward complex composition 126
15.1 Simpleideas 126
15.2 Composition: Representing musical information 128
15.3 Composition: Phrase structures 133
16 Considerations for group composition 136
16.1 Group composition: Technical issues 136
16.2 Group composition: Creativeissues. 139
IV Effects and Mixing 143
17 Effects and mixing 143
17.1 Mechanics: Applyingeffects 143
17.2 Shared effects 147
17.3 Common effects: Chorus 151
17.4 Common effects: Distortion 154
17.5 Common effects: EQ 158
17.6 Common effects: Reverb 159
V Canonical Style 160
18 Canonical-style synthesis 160
18.1 Converting to canonical style 160
182 SynthDefs e 161
18.3 Canonical style: Additional topics 164
18.4 But really, whattodonext? 166
VI Appendix: Additional Topics 167
19 Modal synthesis 167
19.1 Ringing filters. 0. 167
19.2 Banks of ringing filters 169
19.3 Formant synthesis, 171
19.4 Karplus-Strong 177
20 Programming concepts for composition 183
20.1 Composition: Data structures 183
20.2 Composition: Control structures 192
21 Synchronizing interfaces: Model-View-Controller 197
21.1 Model-View-Controller object design 197

4 1 PREFACE

VII Indices 206
22 Glossaries 206
221 C0oNCePES. « v v e e e e e e e e 206
222UGENS . . v v v o e e e e e e e e e e e e 215
22.3 Otherclasses i 219
224 Methods e e 225
23 List of Code Examples 232
1. Preface

1.1. Preface

Project history

In autumn 2013, 5k Z&1# (Zhang Ruibo, Shenyang Conservatory and head
of CHEARS, the China ElectroAcoustic Resource Survey) approached me to
present a week-long introductory SuperCollider workshop in April 2014. I
wrote this material in the first couple of months of 2014.

Overview

This document includes all the presentation slides from the workshop, plus
further explanation in text, an Appendix with additional topics (interesting,
but too much for one week!), and an index and glossary of terms. The mate-
rial serves two purposes: first, to guide the workshop sessions (which don’t
need to follow the slides exactly), and second, to provide documentation
which CHEARS may translate into Chinese.

The workshop aims to simplify individual units of code by imitating
modular synthesis in code. This approach avoids several of the trickier chal-
lenges of learning SuperCollider, related to code structure and server archi-
tecture. It is, however, a new approach; “canonical” SuperCollider style is
different in some important ways.

Why not simply teach the canonical style? When approaching any pro-
gramming language, small code blocks are easier to understand, while
larger ones, even ten lines, may be scary at first. Canonical style binds many
synthesizer components into one self-contained unit called a SynthDef; di-
viding it into more digestible pieces requires the new user to understand
details of the server that are likely to be confusing at first. The modular
style presented here allows each module to handle one small piece of syn-
thesis and relieves the new user from the burden of understanding advanced
concepts too early.

This modular style depends on some new extensions to the language.
Installation instructions are in Part I. The specific extensions are:

1.1 Preface 5

+ Improved handling of modules that represent constant numbers.
« A modifier, \psSet, to act on many modules at once using a central
code interface.

Some of these may be incorporated in future SuperCollider versions. At
that time, the workshop extensions package will have to change.

Typographical conventions
Code examples appear in a monospaced sans-serif font, Inconsolata:!
Server.local.boot.

Keyboard shortcuts are boxed: .

Numbered code examples are collected into scd files. Each Part has two
collections: one with all examples, and the other with only selected exam-
ples. I strongly recommend using the selected examples only. You will learn
more by typing the examples yourself, instead of passively executing them.

The document is written using org-mode 8.2.32 running in Emacs 23, and
typeset using BIEX (xelatex from TexLive 20123) with Beamer extensions.*

Copyleft and licensing

This document and all associated materials are released under the Creative
Commons Attribution-ShareAlike 4.0 license.® You may use these materials
as the basis of a new workshop or course, if you:

+ Give credit to me as the initial author (Attribution);

* Release your materials under a similar (more permissive) license
(ShareAlike). That is, you should allow others to modify your version
and publish their version.

You may not lift large passages of this work and claim them as your
own, or publish them under a copyright-style license that forbids further
modification. This work is meant to be part of a conversation about art and
programming. Copyright stops the conversation, so I don’t want it.

Acknowledgments
I won’t attempt a complete list of thanks, but here’s a good start:

 The entire community of SuperCollider users and developers, without
whom, none of this. In particular:

- James McCartney, for inventing the thing;

http: //www. levien.com/type/myfonts/inconsolata.html
thtp://orgmode.org

3http: //tug.org/texlive/

4https ://bitbucket.org/rivanvx/beamer/wiki/Home
Shttp://creativecommons.org/licenses/by-sa/4.0/

1 PREFACE

— Julian Rohrhuber and Alberto de Campo, for considering im-
provements to JITLib that make this modular-synthesis usage
much easier.

+ The org-mode development team, for a spectacularly customizable au-
thoring tool (plus calendar, to-do list and in-general everything tool).

+ Users of http://tex.stackexchange.com for advice on a few sticky
ETEX problems.

